Evakuator-gruzovik.ru

Авто журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лямбда зонд (кислородный датчик): устройство и принцип работы, неполадки и способ замены

Лямбда зонд (кислородный датчик): устройство и принцип работы, неполадки и способ замены

Ввиду постоянного ухудшения экологических условий и для снижения (к сожалению, абсолютной ликвидации загрязняющих источников на данный момент достичь пока не удалось) загрязнения окружающей среды правительствами многих стран мира были введены крайне жесткие требования к выбросам выхлопных газов (т.е. были введены нормы содержания вредных веществ в автомобильных выхлопах). Поэтому для этих целей в автомобилестроении начали применять специальной устройство – катализатор, который отвечает за снижение концентрации вредных продуктов сгорания в выхлопных газах.

Катализатор является важным узлом в выхлопной системе. Но для того, чтобы он работал с максимальной эффективностью, требуется соблюдение строго определенных условий (постоянный контроль состава подаваемой топливной смеси и % содержания воздуха на выходе). Без их соблюдения катализатор довольно быстро выйдет из строя, и перестанет выполнять свои функции.

Именно для поддержания оптимальной работы катализатора инженерами было разработано решение в виде специального кислородного датчика, который также носит название «Лямбда зонд» (от буквы греческого алфавита «L» — «лямбда», которая в автомобилестроении обозначает коэффициент избытка воздуха в воздушно-топливной смеси).

Что это такое

Оптимальный состав топливно-воздушной смеси содержит 1 часть бензина на 14,7 частей атмосферного воздуха. Если принять такое соотношение за единицу, то его отклонение в большую/меньшую сторону свидетельствует об обогащенном или обедненном составе смеси. Чтобы катализатор работал максимально эффективно, отклонение от оптимальной единицы должно быть не более одного процента.

Технически проблема решается посредством установки встроенного в электронную систему подачи топлива лямбда-зонда, который поддерживает состав топливно-воздушной смеси в катализаторе в оптимальных пределах.

Каталитический нейтрализатор

Каталитический нейтрализатор – это устройство, назначение которого является снижение вредных выбросов в окружающую среду. Катализатор очень полезная вещь, только для его корректной работы следует соблюдать некоторые условия. Огромное влияние на работу катализатора оказывает состав топливно-воздушной смеси. Именно от качества топливно-воздушной смеси и зависит ресурс работы катализатора. Поэтому и был разработан датчик Лямбда зонд, который отвечает за контроль состава этой же топливно-воздушной смеси. В просто народе его называют датчик кислорода.

Что такое Л ямбда зонд и как выглядит датчик Л ямбда зонд ?

Не секрет, что свое название датчик получил от обозначения коэффициента избытка воздуха, который обозначается греческой буквой Лямбда. Лямбда зонд применяется для измерения состава отработавших газов и содействует в дальнейшем для поддержания оптимального состава смеси топлива и воздуха. Оптимальное соотношение топливно-воздушной смеси обеспечит качественное сгорание, что уменьшит выброс вредных веществ в атмосферу.

Оптимальный состав топливно-воздушной смеси это когда на 14,7 частей воздуха приходится 1 часть топлива, при этом Лямбда равняется одному. На старых советских двигателях такого сложно было добиться. А в современных автомобилях для этого используют системы питания с электронным впрыском топлива, которая взаимодействует с датчиком Лямбда-зонд.

Как измеряется избыток воздуха в топливно-воздушной смеси?

Избыток воздуха в топливно-воздушной смеси измеряется путем определения в отработавших газах содержания остаточного кислорода (О2). Этим объясняется и расположение датчика в выпускном коллекторе непосредственно перед катализатором.

Для считывания сигнала с Лямбда датчика используется электронный блок управления системы впрыска топлива (ЭБУ), который отвечает за оптимизацию состава топливно-воздушной смеси, то уменьшая, то увеличивая подачу топлива в цилиндры двигателя.

Некоторые производители автомобилей пошли еще дальше, и начали устанавливать по два Лямбда датчика в выхлопной системе, перед катализатором и после него. Два датчика Лямбда устанавливали для того, чтобы увеличить точность приготовления горючей смеси и улучшить работу катализатора.

Принцип работы лямбда-зонда

Схема датчика кислорода лямбда зонда на основе диоксида циркония: 1 – твердый электролит; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – сигнальный контакт; 6 – выхлопная труба.

Наиболее качественное измерение выхлопных газов Лямбда датчиком обеспечивается при температуре 300-400 градусов Цельсия. При такой температуре Циркониевый электролит становиться более проводимым, вследствие чего на электродах датчика появляются выходное напряжение.

Поэтому при запуске и прогреве двигателя датчик не используется. На этих режимах работы двигателя контроль качества топливно-воздушной смеси осуществляют датчики положения дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик количества оборотов коленчатого вала.

Читать еще:  Признаки плохих свечей зажигания


На схеме представлена зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при 500-800°С температуре датчика.

Для качественной работы датчика при низких температурах применяют принудительные нагревательные элементы.

Что будет если не работает датчик Лямбда?

Если не работает датчик лямбда зонд, тогда ЭБУ выбирает средние параметры работы, считывая данные с своей памяти. Параметры топливно-воздушной смеси будут разниться от идеальной.

К чему приведет поломка Лямбда датчика?

Поломка Лямбда датчика приведет к повышению расхода топлива, на холостом ходу двигатель будет работать неравномерно, в выхлопных газах будет содержаться повышенный уровень СО, упадет мощность двигателя, но автомобиль будет на ходу.

Самому проверить Лямбда датчик достаточно сложно, поэтому лучше проконсультироваться с специалистами.

Какой срок службы Лямбда датчика?

Срок службы Лямбда датчика зависит от качества заливаемого топлива. Бывает так, что достаточно нескольких заправок некачественным бензином и датчик приходит в негодность. Средний срок службы Лямбда датчика составляет от 40 до 80 тыс. км пробега.

Разновидности лямбда зондов

По материалу изготовления керамической чести различают циркониевые и титановые датчики.

  1. Циркониевые – классические датчики, в оценивается изменение силы тока, зависящей от разницы в концентрации кислорода;
  2. В титановых датчиках оценивается сопротивление на керамическом элементе, входящем в выпускной коллектор. Чем выше концентрация кислорода в выхлопе, тем выше сопротивление. Доступ внешнего воздуха им для анализа не нужен.

Вторая классификация лямбда зондов – двухточечные (обычные) и широкополосные.

  1. Двухточечные датчики работают именно по той схеме, которая уже описана, измеряется сила тока между двумя электродами;
  2. Широкополосный работает по другому принципу. Кислород из выпускного коллектора под действием силы тока закачивается в камеру, в которой поддерживается стехиометрический состав газа. Если в выхлопе больше кислорода, чем необходимо, лишний удаляется в атмосферу, если кислорода не хватает, он закачивается в камеру. В зависимости от состава газов в выхлопе, датчик измеряет направление и силу тока, поддерживающего нужную концентрацию в измерительной камере, и эти данные поступают на ЭБУ.

И третья классификация, по которой различают кислородные датчики – количество проводов для подключения.

  1. На самых простых датчиках без подогрева монтируются 1-2 провода. Один на блок управления, второй (если есть) на «массу»;
  2. На датчиках с подогревом ставятся 3-4 провода: первые два те же «сигнал» и «масса» (если есть) плюс еще два контакта на нагревательный элемент;
  3. На широкополосных датчиках установлены 5 проводов: первый и второй – нагрев (+ и -), третий – сигнал от измерительной ячейки, четвертый – сигнал от тока накачки, пятый – заземление.
    Распиновка у каждого производителя своя, но чаще всего черный провод всегда идет на сигнал.

Датчик кислорода в автомобиле: назначение и принцип работы

Основная задача датчиков двигателя – передавать на ЭБУ сигналы, многие их которых позволяют блоку управления гибко корректировать топливно-воздушную смесь с учетом постоянно изменяющихся режимов работы и нагрузок на ДВС.

В свою очередь, среди других датчиков ЭСУД сложно переоценить значимость лямбда-зонда (иногда автолюбители на форумах ошибочно называют данный элемент лямдозонд или лямдазон). Если просто, датчики кислорода в автомобиле измеряют коэффициент избытка воздуха в топливовоздушной смеси.

Общее устройство лямбда-зонда следующее:

  • металлический корпус;
  • керамический изолятор;
  • уплотнительное кольцо;
  • проводка и манжеты для уплотнения;
  • защитный корпус с отверстием для вентиляции);
  • токопроводящий контакт;
  • наконечник из керамики;
  • спираль в резервуаре;
  • защитный щиток с отверстием для выпуска газов.

Для производства датчиков данного типа нужны термостойкие материалы, так как устройство работает в условиях высоких температур. Всего кислородные датчики делятся на несколько типов, в зависимости от количества проводов на датчик.

Фактически, указанный датчик определяет коэффициент избытка воздуха, «вынюхивая» выхлоп и фиксируя остаточный кислород в составе отработавших газов. Основная задача датчика кислорода состоит в передаче на ЭБУ двигателя важной информации, которая позволяет контроллеру определить, насколько эффективно происходит процесс сгорания топлива в цилиндрах.

Данная информация нужна для того, чтобы поддерживать оптимальные условия для работы катализатора (каталитического нейтрализатора), который фильтрует выхлоп автомобиля и снижает количество вредных выбросов в атмосферу.

Читать еще:  Регулировка веерных форсунок омывателя лобового стекла

Основная причина такого контроля — максимально эффективная работа катализатора возможна только тогда, когда в двигателе сгорает 14.6–14.8 части воздуха и 1 часть топлива. При горении такой смеси лямбда будет равняться 1±0.01.

Вполне очевидно, чтобы постоянно готовить такую смесь на разных режимах, нужна развитая система питания с электронным впрыском топлива, которая постоянно получает сигналы от датчиков (в том числе и от кислородного датчика).

При этом сам лямбдазонд стоит в выпускной системе, работает в условиях высокого нагрева, а также может выйти из строя, если в двигателе имеются неисправности. Давайте рассмотрим признаки и причины поломок лямбды.

Конструкция и принцип работы лямбды

Лямбда-зонд представляет собой батарейку, внутри которой находится керамический электролит, в состав которого входит диоксид циркония. Электроды батареи выполнены из платины. Электролит включается в работу при температуре не ниже 300-350 C, потому лямбда-зонду нужен разогрев. Когда платиновые электроды соприкасаются с воздухом, имеющим определенное содержание кислорода, между электродами возникает разность потенциалов. Элемент устроен таким образом, что снижение объема кислорода в пространстве одного из электродов более допустимого уровня, ведет к значительному росту ЭДС батареи от до , и наоборот.

Основным конструктивным элементом кислородного датчика является пустотелый керамический наконечник, выполненный из оксида циркония. На его внутреннюю и внешнюю поверхность наносится пористое покрытие из платины, которое выполняет функции внутреннего и внешнего электродов. При нагревании до температуры 300-350C материал превращается в диэлектрик, который проводит сигнал от наружного электрода к внутреннему, что возникает от разности соотношения кислорода между выхлопными газами внутри / снаружи автомобильной системы выхлопа. Ионы кислорода начинают двигаться в направлении от одного из электродов к близлежащему, от области с большой концентрацией кислорода или атмосферы в ту область, где концентрация наименьшая – к выхлопу. При этом возникает электрический ток, причем его сила зависит от степени плотности кислорода с обеих сторон. Данный показатель фиксируется и поступает на ЭБУ , задачей которого является регулировать продолжительность работы инжекторов. Для надежности работы датчика имеющиеся в нем внутренние и внешние электроды надежно заизолированы. В свою очередь, погруженная часть, находящаяся в выпускной системе, изолируется от наружного воздуха.

Как и любой другой элемент автомобиля, кислородный датчик тоже имеет свойство выходить из строя. Чаще всего, об этом свидетельствует соответствующий сигнал на приборной панели автомобиля — «Check Engine». Это говорит о том, что двигатель перешел в аварийный режим работы. Чтобы убедиться в том, что проблема точно коснулась лямбда-зонд, необходимо провести электронную диагностику с помощью бортового компьютера. Код ошибки для вашего типа двигателя можно узнать из технической литературы к автомобилю. Если проблема действительно заключается в датчике кислорода, то необходимо произвести его срочную замену.

Почему датчик выходит из строя? Дело в том, что в выхлопных газах могут содержаться специальные примеси, которые отрицательно воздействуют на электроды устройства. Данные примеси попадают в выхлоп вместе с некачественным бензином, которым заправляют большинство российских автомобилей. Датчик быстро окисляется и перестает выдавать необходимые для контроллера показания. В конечном итоге, двигатель начинает переходить в аварийный режим.

Кроме некачественного бензина, датчик может сломаться из-за других неисправностей двигателя. Например, поврежденная прокладка ГБЦ, допускает попадание антифриза в камеру сгорания. Новое химическое вещество в выхлопной среде очень быстро выводит датчик из строя.

Замена кислородного датчика

Заменяя лямбда зонд необходимо соблюдать некоторые правила:

  • выкручивать регулятор нужно на остывшем до 40-50°C моторе (в этот момент тепловая деформация не так велика, а детали не слишком раскалены);
  • выполняя монтаж нужно смазать поверхность резьбы герметиком, который исключит прикипание;
  • удостовериться в целостности уплотнительной прокладки;
  • затягивать элементы следует производить с определенным производительным моментом – так будет обеспечена нужная герметичность;
  • подключая разъём следует проверить электропроводку на повреждения;
  • после окончания процесса установки следует провести тестирование при разных режимах работы силового агрегата.

Доказательством правильной работы лямбда зонда будет отсутствие указанных ранее признаков сбоев, а также ошибок на электронном блоке управления.

[править] Принцип работы кислородного датчика

Принцип работы кислородного датчика – электрохимический. Большинство кислородных датчиков изготавливаются на основе оксида циркония ZnO2 (окислитель) и платины (катализатор химической реакции окислении/восстановления).

Читать еще:  Лучшие коммерческие автомобили

При работе двигателя выделяются раскалённые выхлопные газы, имеющие сложный химический состав. Основными составляющими их являются азот N2, углекислый газ CO2, кислород O2 и вода H2O. Однако в выхлопных газах содержаться и недоокисленные продукты горения топлива — CO и CH. Именно с недоокисленными продуктами вступает в реакцию окисления/восстановления оксид циркония кислородного датчика. Непременными условиями протекания этих химических реакций является высокая температура (360 градусов Цельсия) и присутствие катализатора (платина).

При восстановлении двуокиси циркония ZnO2 в окись циркония ZnO возникает электрический ток, который детектируется на контактах кислородного датчика. Так как окись циркония ZnO, является недоокисленным продуктом, она постоянно стремится окислится в двуокись циркония ZnO2, поэтому при работе двигателя на поверхности кислородного датчика происходит постоянное чередования процессов окисления и восстановления, что детектируется как волнообразное изменение напряжения на контактах кислородного датчика. Напряжение генерируемое кислородным датчиком колеблется на уровне от 100 mV (бедная смесь) до 900 mV (богатая смесь). При оптимальном соотношении топливо/воздушной смеси датчик генерирует напряжение порядка 465 mV.

Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе. 1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.

Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля

Конструкция датчика кислорода с подогревателем. 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Количество проводов, которые имеет кислородный датчик, может колебаться от одного до пяти и даже шести. Этот внешний признак отражает особенности внутреннего устройства кислородного датчика.

  • Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.
  • Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.
  • Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами:

1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя;

2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента;

3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание.

Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.

  • Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.

Контактные выводы наиболее распространенных циркониевых лямбда-зондов. а – без подогревателя; б, с – с подогревателем. (цвет вывода может отличаться от указанного)

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector