Evakuator-gruzovik.ru

Авто журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Система управления цилиндрами: насколько полезна

Система управления цилиндрами: насколько полезна

Некоторые автолюбители задаются вопросом, а можно ли отключить цилиндр, один или несколько, от системы подачи топлива, не нарушив тем самым их работу в определённой последовательности. Ведь некоторые производители заявляют, что их двигатели умеют деактивировать на ходу несколько цилиндров. Специалисты уверяют, что сделать это можно, более того, приводят в пример ряд даже средних по технологической оснащённости компаний, которые используют такую конструкцию, но обо всём по порядку.

Дефекты гильз цилиндров

Гильзы цилиндров изнашиваются вследствие трения между поршнем и зеркалом (внутренней стенкой цилиндра). Как правило повышенный износ может происходить вследствие таких причин:

— не достаточно масла на стенках цилиндров

-двигатель долго не работал, и все масло стекло в картер

-применение масла не соответствующей вязкости

— коррозия, возникает вследствии применения воды, как охлаждающей жидкости

-сколы, царапины возникают вследствие не правильного монтажа, демонтажа ( все действия по съемке гильз цилиндров нужно проводить согласно правил специальным съемником)

-при не правильной эксплуатации двигателя

Особенности системы управления цилиндрами

Система дает возможность отключить часть клапанов при работе двигателя при незначительной нагрузке. Зачастую она отключает цилиндры в многоцилиндровых двигателях, в которых установлено от 6 до 12 цилиндров.

Отключение любого цилиндра происходит путем закрытия клапанов впуска и выпуска и прекращения подачи топливной смеси в цилиндр. Основной сложностью в реализации системы является постоянное удержание клапанов на отдельном цилиндре.

В настоящее время применяется три основных способа технического решения подобной проблемы.

  1. Применение кулачков распредвала, имеющих различную форму (реализовано в системе Active Cylinder Technology);
  2. Выключение коромысла (реализовано в системах Variable Cylinder Management, а также Active Cylinder Control);
  3. Применение специального толкателя (реализовано в системах Displacement on Demand и Multi-Displacement System)

Схема работы

Хочется отметить — что системы «отключения» бывают различными, сейчас различают до трех основных видов:

1) Механическое отключение. Происходит по средствам распределительного вала, при включении системы он как бы смещается и работает на других «орбитах». Именно он регулирует подачу топлива в поршни мотора, так впускные клапана постоянно закрыты, в них не поступает топливо, а вот выпускные клапана открыты, таким образом поршни просто гоняют воздух внутри. Получается, что работает ровно половина двигателя, именно так достигается экономия.

2) Отключение подачи топлива. Также все элементарно — в определенные цилиндры не поступает топливо, оно ограничивается на уровне «подачи». Если можно так выразиться — система перекрывает «топливопроводы» в определенных местах, и топливо просто не идет в нужные поршни. Причем поршни могут чередоваться. Нужно отметить — что механически это такая же система, здесь не перекрываются клапана, не двигаются распредвалы и т.д., однако в какие-то цилиндры идет топливо в какие-то нет, и они работают в пустую, качая обычный воздух. Небольшое видео.

3) Электронная система. Есть и более продвинутые электронные варианты, применяемые сейчас у компании BMW. Здесь выполняются как «движения» валов, так и электронное перекрытие топливопроводов. Нужно отметить — что может включаться-выключаться автоматически. Например, в городе — когда скорость малая и обороты тоже, ЭБУ дает команду на «включение», если вы выехали на трассу, и надавили «акселератор» система отключается, задействовав весь мотор.

Немного истории

Впервые двигатели с системой, позволяющей отключать цилиндры в процессе эксплуатации, появился в 1981 году. Установлены они были на автомобилях Cadillac. Впускные и выпускные клапана на этих моторах закрывались электромагнитными катушками по команде, полученной от блока управления. Срабатывание катушек обеспечивало неподвижность клапанов.

В 1999 году аналогичная система появилась и на автомобилях Mercedes. Инженеры компании разработали оригинальные составные коромысла, части которых при срабатывании электромагнитного клапана разъединялись. При этом удерживались клапаны в закрытом состоянии специальными пружинами, а блок электронного управления прекращал подачу топлива в отключаемые цилиндры.

Концерн GM в 2004 году также оснастил ряд двигателей аналогичной системой, получившей название Displacement-on-Demand (рабочий объем по требованию). В них разъединение распределительного вала и соответствующих клапанов газораспределительного механизма происходит при помощи специальных толкателей.

Наиболее интересная конструкция была разработана конструкторами компании Honda в 2005 году. Система отключения цилиндров двигателя VCM (Variable Cylinder Management) самостоятельно отключает необходимое количество цилиндров при работе двигателя в различных режимах. Кроме того, она работает совместно с системой регулирования фаз и оснащена вспомогательными системами, которые:

  • снижают вибрации силового агрегата;
  • подавляют шум мотора в салоне.
Читать еще:  Система смазки двигателя ВАЗ 2110

Все разработанные в этот период (1981-2005) конструкции работали только с моторами, имеющими 6 или 8 цилиндров, объем которых составлял не менее трёх литров.

Система управления цилиндрами двигателя

СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ — «DIGIFANT»
(принцип работы и функциональные параметры)

Комплексная система управления двигателем «Digifant» фирмы Volkswagen, состоит из двух подсистем: управления впрыском топлива и управления углом опережения зажигания. Работа всех подсистем управляется электронным контроллером, который является специализированным микрокомпьютером.

Подсистема управления впрыском топлива

Подсистема отвечает за подготовку топливной смеси и ее подачу в двигатель. При этом, к каждому цилиндру, топливная смесь подается отдельной форсункой. Работает подсистема следующим образом:

Топливный эл.насос под давлением 2,5 кг/см2, подает топливо из бензобака через топливный фильтр к топливному тракту и далее к форсункам. В конце топливного тракта установлен регулятор давления топлива в системе, который поддерживает постоянное давление впрыска и осуществляет слив излишков топлива обратно в топливный бак, тем самым, обеспечивая циркуляцию топлива в системе и исключает образование в ней паров топлива.

В зависимости от информации полученной от датчиков установленных на двигателе, эл.контроллер управляет форсунками, таким образом, регулируя количество топливной смеси подаваемой в цилиндры. При этом, учитывается объем и температура всасываемого воздуха, частота вращения и угол положения колен-вала, нагрузка двигателя и температура его охлождающей жидкости. Кроме того, при установленном лямбда-зонде, эл.контроллер учитывает и его информацию, таким образом, оптимально поддерживая содержание вредных примесей в выхлопных газах . Основным параметром, определяющим дозировку топлива, является объем всасываемого воздуха. Поступающий через фильтр воздушный поток отклоняет на определенный угол напорную заслонку, которая связана с потенциометрическим датчиком угла отклонения этой заслонки. Сигнал с датчика положения воздушной заслонки поступает в эл.контроллер, а он определяет какое количество топлива необходимо в данный момент и выдает соответствующие сигналы управления открытия форсунок на необходимое время.

Независимо от положения впускных клапанов впрыск топлива производится дважды на каждый оборот колен-вала. Если впускной клапан закрыт, топливо остается во впускном коллекторе до следующего открытия впускного клапана данного цилиндра.

Обогащение топливной смеси в пусковых режимах может производится посредством подачи дополнительного топлива основными форсунками, как например в двигателях «РВ» или дополнительными форсунками управляемыми эл.контроллером, как в двигателе «2Е».

При превышении заданной частоты вращения двигателя и на принудительном холостом ходу эл.контроллер прекращает управление форсунками, таким образом, прекращая подачу топлива в цилиндры двигателя.

Дозирование подачи воздуха при пуске, прогреве и на холостом ходу осуществляется клапаном стабилизации холостого хода.

Функциональные параметры:


Топливный насос.

Электрический погружной роликовый топливный насос. Установлен в топливном баке в одном блоке с датчиком уровня топлива.

Марка и каталожный номер: BOSCH 0 580 453 012.
Давление подачи топлива — 3 кг/см 2 . Производительность при напряжении питания на выводах:
— 9в: 275 см 3 /30сек.
— 10в: 350 см 3 /30сек.
— 11в: 425 см 3 /30сек.
— 12в: 500 см 3 /30сек
. по всем параметрам +/- 10см 3 /30сек.

Регулятор давления топлива.

Регулятор давления топлива диафрагменного типа. Установлен на топливном тракте и служит для обеспечения постоянного давления топлива в системе.

Давление регулирования на холостом ходу:
— при подсоединенной вакуумной трубке: 2,5 кг/см 2 ;
— при отсоединенной вакуумной трубке: 3,0 кг/см 2 .
Давление тарировки: +/- 0,2 кг/см 2 .
Остаточное давление в системе через 10мин. после выключения топливного насоса, не менее 2кг/см 2 .

Измеритель расхода воздуха.

Измеритель расхода воздуха с напорным диском для измерения количества воздуха поступающего в двигатель. Потенциометрический. Установлен на оси напорного диска, с встроенным в корпус, датчиком температуры всасываемого воздуха резистивного типа и отрицательным температурным коэффициентом (при повышении температуры уменьшается сопротивление).

Марка: BOSCH.
Номера по каталогу:
заводская установка — 0 280 200 241;
запчасть — 0 289 200 242.
Сопротивление потенциометрического датчика при измерении между выводами разъема измерителя расхода воздуха:
— «3» и «4»: 500-1000 ом;
— «2» и «3»: плавно изменяется в зависимости от положения напорного диска.

Сопротивление датчика температуры всасываемого воздуха при измерении между выводами «1» и «4» разъема измерителя расхода воздуха и при температуре воздуха:
— 0С: 5,5 +/- 0,7 кОм;
— 20С: 2,5 +/- 0,5 кОм;
— 30С: 1,8 +/- 0,2 кОм;
— 50С: 0,8 +/- 0,1 кОм;
— 80С: 0,35 +/- 0,05 кОм;
— 100С: 0,2 +/- 0,025 кОм.

Датчик температуры охлаждающей жидкости.

Датчик температуры охлаждающей жидкости того же типа, что и датчик температуры всасываемого воздуха и с теми же характеристиками.

Читать еще:  Проверка тормозной системы Лада Приора

Датчики положения дроссельной заслонки.


Вариант 1.

Установлены датчик холостого хода и датчик полной нагрузки. Оба датчика позиционного типа. Установлены на оси дроссельной заслонки. Служат для определения режима работы двигателя.

Сопротивление датчика холостого хода при зазоре 0,2-0,6 мм. между рычагом управления дроссельной заслонкой и упором холостого хода — 0,5 Ом.

Сопротивление датчика полной нагрузки при угле 10 +/- 2 градусов между дроссельной заслонкой и упором полной нагрузки — бесконечность.

Вариант 2.

Датчик положения дроссельной заслонки потенциометрического типа. Установлен на оси дроссельной заслонки.

Напряжение при измерении между выводами «2» и «3» разъема датчика:
— при положении дроссельной заслонки на упоре холостого хода или полной нагрузки: 0-0,5в.
— при промежуточном положении дроссельной заслонки: 4,5-5,0в.

Клапан стабилизации холостого хода.

Воздушный клапан стабилизации холостого хода электромагнитный, ротационного типа. Установлен в воздушном тракте, параллельно корпусу дроссельной заслонки и обеспечивает постоянство оборотов двигателя на холостом ходу за счет изменения проходного сечения воздушного канала.

Датчик содержания кислорода в выхлопных газах (лямбда-зонд).

Датчик выдает на эл.контроллер информацию о содержании кислорода в выхлопных газах. Устанавливается на выпускном коллекторе двигателя.

Напряжение питания — 12В.
Выходной ток — 0,5-3,0А.

Подсистема управления углом опережения зажигания.

Основными элементами подсистемы управления углом опрежения зажигания являются: эл.контроллер, коммутатор, встроенный в распределитель зажигания датчик числа оборотов двигателя (датчик Холла), встроенный в контроллер датчик разрежения, датчик детонации, катушка и свечи зажигания. Датчик детонации обеспечивает контроль за нагрузкой двигателя и является основным для регулирования угла опережения зажигания.

Угол опережения зажигания вычисляется эл.контроллером в прямой зависимости от показаний датчиков, он же и осуществляет управление зажиганием.

Функциональные параметры:


Распределитель зажигания.

Распределитель зажигания с осевыми выводами, с встроенным датчиком Холла. Служит для распределения зажигания по цилиндрам, определения числа оборотов двигателя и момента искрообразования.

Номер по каталогу: BOSCH 0 237 520 010.

Начальный угол опережения зажигания до ВМТ при отключенном разъеме датчика температуры охлаждающей жидкости — 6 градусов +/-18 сек.

Выходное напряжение датчика Холла при измерении между выводами «4» и «6» разъема коммутатора — 0 -2В.

Сопротивление ротора датчика Холла — 0,6-1,4 Ом.

Коммутатор.

Номер по каталогу: BOSCH 0 227 100 142

Катушка зажигания.

Катушка зажигания с маркировкой серого или зеленого цвета.
Сопротивление первичной обмотки — 0,6-0,8 Ом.
Сопротивление вторичной обмотки — 6,9-8,5 кОм.

Элементы подавления радиопомех.

Сопротивление помехоподавительных резисторов — 0,6-1,4 кОм.
Сопротивление наконечников свечей зажигания — 4,0-6,0 кОм

Структурная схема системы управления двигателем — «DIGIFANT».

1Топливный бак11Измеритель потока воздуха
2Топливный фильтр12Реле управления
3Топливный насос13Лямбда-зонд
4Электронный блок управления14Датчик детонации
5Регулятор давления топлива15Термодатчик охл.жидкости
6Накопитель топлива16Распределитель зажигания
7Инжектор17Клапан стабилизации Х.Х.
8Пусковая форсунка18Винт регулировки СО
9Винт регулировки Х.Х.19Аккумуляторная батарея
10Дроссельная заслонка20Замок зажигания

Использован материал сайта «ICars» WEB-Page

Выявить неисправность с помощью ЭБУ достаточно просто. Подключите автотестер с помощью разъема OBD и найдите расшифровку обнаруженных ошибок. Коды Р0301, Р0302, Р0303, Р0304 указывают на проблемы в одном из четырех цилиндров, бронепроводах, свечах или прокладках, связанных с ними в соответствии с последней цифрой шифра. Если тестер показывает ошибку Р0300, то проверить нужно всю систему в комплексе, включая фильтры и состав горючей смеси. О неполадках в форсунках говорят коды Р0201, Р0202, Р0203, Р0204 и т.д. (по числу цилиндров в силовом агрегате). Код Р0400 описывает проблему в выпускном коллекторе.

Отечественные модели зачастую оснащены ЭБУ старого поколения. Такую систему лучше поменять в авторизованных сервисных центрах на обновленную, совместимую с электроникой авто в целом. Современные блоки позволяют легко обнаружить пропуски зажигания в конкретных цилиндрах.

Без детонации – никак?

Но если для поломки от детонации требуются десятки или даже сотни тысяч ударов и оборотов коленвала, то вполне очевидно, что пара-тройка одиночных ударов никак не смогут повредить поршень. То есть детонация – это не кувалда, которая ломает двигатель с одного удара. Ломает его количество ударов. Тогда надо понимать, что детонация – это никакая не «чума» для двигателя внутреннего сгорания, в чем совершенно убеждены наши «мастера»-эксперты, а вполне нормальный рабочий процесс. Важно только правильно им управлять.

Сказано – сделано. Именно так, «по детонации», и работает система управления двигателем. Как это происходит? При появлении детонации характерный стук регистрируется датчиком детонации – и происходит автоматическая регулировка угла опережения зажигания, длительности импульса на форсунку и другие действия, чтобы на следующем обороте коленвала «убрать» этот нежелательный для двигателя эффект.

Читать еще:  Встречаем новый Toyota RAV4 Hybrid 2016

Вот и получается, что наличие детонации является не вредным и фатальным, а напротив, совершенно необходимым условием работы системы управления современным двигателем. Разумеется, если это делается правильно. Более того, если детонация исчезает, то система управления просто «слепнет», не понимая, что ей делать. И начинает двигать угол опережения на более раннее зажигание – до тех пор пока детонация не появится или не сработают какие-то другие программные ограничения.

То есть сама по себе детонация не является причиной поломки, поскольку нормальный двигатель рассчитан на ее появление. Скажем больше – в нормально работающем двигателе она просто должна быть. И точка.

так выгладит не вполне характерный пример разрушения поршня в результате детонации — каверны буквально «съели» металл на краях

Но что происходит, если в бак залить низкооктановый бензин? Сразу появляется детонация? Ничего, это – вполне нормальное явление, и система управления начинает в штатном режиме уменьшать угол опережения зажигания. Но через несколько оборотов коленвала угол становится «на упор»: уменьшить его уже нельзя, поскольку программных возможностей нет. А детонация остается – и вот это является опасным режимом работы двигателя. Который даже фиксируется в памяти блока управления – там записывается соответствующий код ошибки.

Возможно, кто-то услышит эту детонацию. А возможно, и не услышит: сегодня звукоизоляция автомобилей находится на довольно высоком уровне. И вот здесь кроется вся сложность и опасность ситуации: например, водитель приглушил музыку в салоне, услышал стук – и принял меры. Но оказалось, что уже поздно: усталость металла сделала свое «черное дело», и какой-то из поршней уже сломан. Причем до момента наступления поломки ничто, как говорится, «не предвещало»…

Иногда на краях поршня, там, где и возникают детонационные взрывы, может появиться эрозия – и поверхность будет буквально «изъедена» кавернами. Такой эффект наблюдается чаще на турбированных двигателях. На «атмосферниках» эрозия не успевает проявиться: раньше рушатся перемычки колец, двигатель теряет компрессию, резко возрастает расход масла, и эксплуатацию такого двигателя прекращают, потому что он уже явно неисправен.

Некоторые «мастера»-эксперты убеждены: детонация настолько зла, что рушит все подряд, даже свечи зажигания. Аргумент, надо сказать, «так себе» – как бедной свече повредиться, если детонация возникает в самом дальнем «углу» камеры, наиболее удаленном от свечи? И нужны уникальные условия, чтобы такое повреждение все-таки произошло…

Та же история и с клапанами: во время возникновения детонации они закрыты и, как говорится, «и в ус себе не дуют», лежат спокойно в седле. Конечно, если они не герметичны, то их может «пристукнуть» и даже «прижечь», но в ином случае им ничего такого явно «детонационного» не грозит.

Вкладыши коленвала, конечно, тоже испытывают некие удары от детонации, однако она «бьет» через большое количество деталей: поршень, палец, шатун. И чтобы повредить вкладыш, необходим удар такой зубодробительной силы, который впору сравнить с ударом кувалды даже не по, а через наковальню – такой разрушил бы всю шатунно-поршневую группу, прежде чем смог бы достать до вкладыша. Возможен ли такой удар на практике, предоставим решить читателю самостоятельно в качестве «домашнего задания».

Топливные системы дизельных двигателей

Система подачи топлива дизельного двигателя имеет следующие особенности:

— Подача топлива в камеры сгорания осуществляется форсунками под высоким давлением (за счет которого происходит воспламенение топливно-воздушной смеси);
— Давление создается специальным топливным насосом высокого давления (ТНВД).

Таким образом, в топливной системе дизеля присутствует два насоса — низкого и высокого давления. Насос низкого давления (часто его называют подкачивающим насосом) обеспечивает подачу топлива к ТНВД, а ТНВД — подачу топлива в форсунки.

Принцип работы топливной системы дизельного двигателя сводится к следующему: топливо с помощью подкачивающего насоса подается к ТНВД (попутно проходя через фильтр тонкой очистки), откуда под высоким давлением поступает в установленные в головках цилиндров форсунки. Форсунки в определенные моменты открываются и распыляют топливо в камере сгорания, в которые через отдельный клапан (или клапаны) подается очищенный воздух. Излишки топлива от ТНВД и форсунок через трубки отлива топлива возвращаются в топливный бак.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector